On CPU Performance Optimization of Restricted Boltzmann Machine and Convolutional RBM
نویسندگان
چکیده
Although Graphics Processing Units (GPUs) seem to currently be the best platform to train machine learning models, most research laboratories are still only equipped with standard CPU systems. In this paper, we investigate multiple techniques to speedup the training of Restricted Boltzmann Machine (RBM) models and Convolutional RBM (CRBM) models on CPU with the Contrastive Divergence (CD) algorithm. Experimentally, we show that the proposed techniques can reduce the training time by up to 30 times for RBM and up to 12 times for CRBM, on a data set of handwritten digits.
منابع مشابه
A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملLearning Features for Tissue Classification with the Classification Restricted Boltzmann Machine
Performance of automated tissue classification in medical imaging depends on the choice of descriptive features. In this paper, we show how restricted Boltzmann machines (RBMs) can be used to learn features that are especially suited for texture-based tissue classification. We introduce the convolutional classification RBM, a combination of the existing convolutional RBM and classification RBM,...
متن کاملScalability of using Restricted Boltzmann Machines for Combinatorial Optimization
Estimation of Distribution Algorithms (EDAs) require flexible probability models that can be efficiently learned and sampled. Restricted Boltzmann Machines (RBMs) are generative neural networks with these desired properties. We integrate an RBM into an EDA and evaluate the performance of this system in solving combinatorial optimization problems with a single objective. We assess how the number...
متن کاملImposing higher-level Structure in Polyphonic Music Generation using Convolutional Restricted Boltzmann Machines and Constraints
We introduce a method for imposing higher-level structure on generated, polyphonic music. A Convolutional Restricted Boltzmann Machine (C-RBM) as a generative model is combined with gradient descent constraint optimization to provide further control over the generation process. Among other things, this allows for the use of a “template” piece, from which some structural properties can be extrac...
متن کاملDeep Restricted Boltzmann Networks
Building a good generative model for image has long been an important topic in computer vision and machine learning. Restricted Boltzmann machine (RBM) [5] is one of such models that is simple but powerful. However, its restricted form also has placed heavy constraints on the model’s representation power and scalability. Many extensions have been invented based on RBM in order to produce deeper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016